- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Lutz, Neil (5)
-
Lutz, Jack H (3)
-
Mayordomo, Elvira (3)
-
Jung, Chris (1)
-
Kannan, Sampath (1)
-
Lutz, Jack H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate the relationship between algorithmic fractal dimensions and the classical local fractal dimensions of outer measures in Euclidean spaces. We introduce global and local optimality conditions for lower semicomputable outer measures. We prove that globally optimal outer measures exist. Our main theorem states that the classical local fractal dimensions of any locally optimal outer measure coincide exactly with the algorithmic fractal dimensions. Our proof uses an especially convenient locally optimal outer measureκdefined in terms of Kolmogorov complexity. We discuss implications for point-to-set principles.more » « lessFree, publicly-accessible full text available May 7, 2026
-
Lutz, Jack H; Lutz, Neil; Mayordomo, Elvira (, Information and Computation)
-
Lutz, Jack H; Lutz, Neil; Mayordomo, Elvira (, Theory of Computing Systems)
-
Lutz, Jack H.; Lutz, Neil; Mayordomo, Elvira (, 39th International Symposium on Theoretical Aspects of Computer Science)
-
Jung, Chris; Kannan, Sampath; Lutz, Neil (, Symposium on Discrete Algorithms (SODA))
An official website of the United States government
